UNIVERSITY OF MICHIGAN-DEARBORN

Unplugging the Electric Car - Wireless charging of electric vehicles with extremely high efficiency and misalignment

Siqi Li, Tommy Nugyen, Weihan Li Chris Mi, Ph.D, Fellow IEEE

tolerance

Professor, Department of Electrical and Computer Engineering Director, DOE GATE Center for Electric Drive Transportation

Conventional EV Charging

Normal charging AC charging using level 1 or level 2, voltage at 110V, 220V, 6-10 hours per charge Charge at home or public space, need large installation of charge stations **Fast charging** Mostly DC charging in 15 to 30 minutes. For an EV with a 24kWh battery pack, charging in 15 minutes means 96kW. This is way over the power available in private homes. **Battery swapping**

3

Investment of battery packs; standardization is difficult; swapping stations need a lot investment, space and manpower; safety and reliability is of concern

Issues of Con. Charging and Battery Swapping

Electric safety is of concern: electric shock due to rain, etc.

Charge station, plug and cable can be easily damaged, stolen

Charge/swap station takes a lot of space and affect the views

Wireless Charging

- In 1830's, Faraday's law of induction
- In 1890's, Tesla had a dream to send energy wirelessly
- GM EV1 used an Inductive charger in the 1990's
- 2007, MIT demonstrated a system that can transfer 60W of power over 2 m distance at very low efficiency
- Wireless/inductive chargers are available on the market
- Qualcomm, Delphi (Witricity), Plugless Power, KAIST, etc. have developed EV wireless charger prototypes

Wireless market \$17 Billion in 2019

Ultrasound

招声波

Latest Development in Wireless EV Charging

Korea KAIST

Problems and Difficulties

- Magnetic field is diminishing proportional to1/r³
- Often the mutual inductance is less than 20% or 10% of the self inductance
- Analytical calculation of coil mutual inductance is next to impossible
- Further analytical method is needed
- Numerical simulation and coupled field lumped parameter simulation is also of paramount importance
- High frequency HFSS instead of static FEM for high frequency

The Topology

- Analytical
 - Equivalent circuit analysis; S-parameter analysis; Analytical solutions of inductance and capacitances
- Numerical
 - Finite element analysis electromagnetic; High frequency structure simulation HFSS
 - Coupled field and lumped parameter analysis
- Experimental

Exposed field to a human of 1.8-meter high

Human body is exposed to maximum about 1.6uTesla in foot area while about 0.06uT in head area.

Experimental Verification

Vehicle Demonstration

- Working closely, we are making a vehicle level demonstration by end of 2013 or early 2014
- We are also working with DENSO to bench mark the design with existing wireless charging systems
- UM is also signing an agreement with Mia Motors, Inc. to commercialize the wireless charging for electric buses.

